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        Introduction 

 The increasing loss of biodiversity globally has led to numerous 
proposals to intensify efforts to produce a census of all biologi-
cal diversity and to modernize taxonomy ( Bisby  et al. , 2002; 
Godfray, 2002; Besansky  et al. , 2003; Lipscomb  et al. , 2003; 
Mallet & Willmott, 2003; Seberg  et al. , 2003; Tautz  et al. , 2003 ). 
Traditional morphology-based taxonomic procedures are time-
consuming and not always sufficient for identification to the 
species level, and therefore a multidisciplinary approach to tax-
onomy that includes morphological, molecular and distribu-
tional data is essential ( Krzywinski & Besansky, 2003 ). 

  Hebert  et al.  (2003a , b) have shown that the analysis of short, 
standardized genomic regions (DNA barcodes) can discriminate 
morphologically recognized animal species. In particular, they 
suggest that the mitochondrial gene cytochrome c oxidase sub-
unit 1 (CO1) can serve as a uniform target gene for a bioidenti-
fication system. 

 The ability of DNA barcodes to identify species reliably, 
quickly and cost-effectively has particular importance in medi-
cal entomology, where molecular approaches to species diag-
noses are often of great benefit in the identification of all life 
stages, from eggs to adults. As  Besansky  et al.  (2003)  stated: 
 ‘ Nowhere is the gap in taxonomic knowledge more urgent than 
for medically important pathogens and their invertebrate vec-
tors ’ . For example, since the recent arrival of West Nile virus 

(WNv) in North America, mosquito identification and assess-
ment of vector status has gained renewed significance on this 
continent. Successful longterm control of WNv will be aided by 
information on the epidemiological role of mosquitoes and the 
transmission biology of the virus. 

 Although biting insects have been studied more extensively 
than most other animal groups, our taxonomic knowledge of 
mosquitoes is far from complete. Since  Edwards (1932)  out-
lined the modern system of mosquito classification, the number 
of described mosquito species has more than doubled from 1400 
to almost 3200 ( Zavortink, 1990; Harbach & Kitching, 1998 ) 
and new species are still being identified. 

 Several genetic approaches have been applied to the identifica-
tion of mosquito species, including protein electrophoresis ( Green 
 et al. , 1992; Foley  et al. , 1995; Sukowati  et al. , 1999; Van Bortel 
 et al. , 1999 ), hybridization assays ( Beebe  et al. , 1996; Crampton & 
Hill, 1997; Cooper  et al. , 2002 ) and polymerase chain reaction 
(PCR)-based sequence analysis. The latter has the advantage of 
requiring minute amounts of material for analysis. Methods based 
on PCR, such as satellite DNA ( Krzywinski  et al. , 2005 ), restric-
tion fragment length analysis, single-strand conformation shifts, 
or heteroduplex analysis, have been applied to detect diagnostic 
differences among PCR products in mosquito species ( Moriais & 
Severson, 2003; Santomalazza  et al. , 2004; Weeto  et al. , 2004; 
Garros  et al. , 2005   ;  Goswami  et al. , 2005 ). Most PCR assays have 
examined sequence diversity in specific nuclear loci ( Scott  et al. , 
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1993; Beebe & Saul, 1995; Singh  et al. , 1997   ;  Koekemoer  et al. , 
1999; Proft  et al. , 1999; Walton  et al. , 1999   ;  Hackett  et al. , 2000; 
Favia  et al. , 2001; Manonmani  et al. , 2001; Cohuet  et al. , 
2003; Kent  et al. , 2004; Smith & Fonseca, 2004; Kampen, 2005   ; 
 Marrelli  et al. , 2005 ). Other researchers have examined the taxo-
nomic insights that can be gained by combining information from 
two or more genes ( Nguyen  et al. , 2000; Krzywinski  et al. , 2001; 
Linton  et al. , 2001; Mitchell  et al. , 2002; Linton  et al. , 2003; 
Dusfour  et al. , 2004; Shaikevitch & Vinogradova, 2004; Cook 
 et al. , 2005 ). Multiplex PCR assays that included both universal 
(conserved) and species-specific primers were performed by  Phuc 
 et al.  (2003) . By contrast with the many studies on nuclear genes, 
little taxonomic work has targeted haploid mitochondrial DNA 
sequences in mosquitoes and less yet has examined sequence 
diversity in the CO1 gene ( Rey  et al. , 2001; Fairley  et al. , 2000 , 
2002; Sallum et al., 2002  ), despite its established potential for the 
diagnosis of biological diversity ( Hebert  et al. , 2003a , 2003b, 
2004). The CO1 region is present in the hundreds of copies 
per cell, it generally lacks indels, and, in common with other 
protein-coding genes, its third position nucleotides show a high 
incidence of base substitutions. Changes in its amino acid 
sequence occur more slowly than those in any other mitochon-
drial gene, aiding resolution of deeper taxonomic affinities and 
primer design. 

 In this study, sequence variation in the barcode region of CO1 
was analysed to test its usefulness in the identification of mos-
quito species from eastern Canada.  

  Materials and methods 

  Mosquito collections 

 During 2002 and 2003, adults belonging to 37 mosquito spe-
cies were collected across Ontario (    Fig.   1,     Table   1) as part of the 
West Nile Virus Surveillance Programme. Mosquitoes were 
sampled with CO 2 -baited CDC (Center for Disease Control) 
miniature light traps (BioQuip, Rancho Dominguez, CA, 
U.S.A.) and were identified using standard taxonomic keys 
( Wood  et al. , 1979; Darsie & Ward, 2005 ). In addition, individu-
als of five mosquito species from New Brunswick ( Table   1 ) 
were sequenced to provide preliminary information about the 
degree of geographical variation in sequences within Canada 
and sequences from 19 species were chosen from GenBank 
( Table   1 ) to test for variation across a greater geographical area. 
These were the only mtDNA sequences for mosquitoes that 
matched our CO1 barcode region. 

 Sample preparation, DNA extraction, amplification 
and sequencing 

 Nearly half of the samples used for DNA extraction were ob-
tained from 100  � L slurries of individual mosquitoes that had 
been homogenized earlier and pre-treated to test for WNv 
( Condotta  et al. , 2004 ). DNA extractions for the remaining 

    
     Fig.    1.     Map of study area showing sampling sites within locations of the Health Units of the Ontario Ministry of Health and the First Nations territo-
ries. AL, Algoma; BR, Brant; GB, Bruce Grey Owen Sound; DR, Durham; EG, Elgin – St. Thomas; EO, Eastern Ontario; HK, Haliburton – Kawartha – 
Pine Ridge; HL, Halton; HM, Hamilton Wentworth; HN, Haldimand – Norfolk; HP, Hastings – Prince Edward; HR, Huron; CK, Kent – Chatham; KG, 
Kingston – Frontenac – Lennox – Addington; LM, Lambton; LG, Leeds – Grenville – Lanark; MI, Manitouli Island; ML, Middlesex – London; MP, 
Muskoka – Parry Sound; NB, North Bay and District; NI, Niagara; NW, North-western; OT, Ottawa – Carleton; OX, Oxford; PE, Peel; PC, Porcupine; PD, 
Perth District Health; PT, Peterborough County; RE, Renfrew County and District; SM, Simcoe; SB, Sudbury; TB, Thunder Bay; TK, Timiskaming; 
TO, Toronto; WA, Waterloo; WD, Wellington – Dufferin – Guelph; WE, Windsor – Essex County; YK, York. First Nations: CT-FN, Chippewas of the 
Thames; HI-FN, Hiavatha; MN-FN, Chippewas of Rama; NC-FN, Mississauga of New Credit; SN-FN, Six Nations of Grand River; TY-FN, Mohawks 
of the Bay of Quinte; WI-FN, Walpole Island.   
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     Table   1.     List of mosquito species, collection sites and number of 
sequences per species used in the study.     

  Species
Collection origin 
in Ontario

Collection origin 
outside Ontario

Number of 
specimens    

 Aedes abserratus Central 2  
Northern 7  
South-western 1  

 Aedes aegypti GenBank 5  
 Aedes atropalpus South-western 5  

GenBank 1  
 Aedes aurifer Central 1  
 Aedes canadensis Central 7  

Eastern 4  
South-western 3  
Northern 2  

New Brunswick 4  
 Aedes cantator South-western 2  

New Brunswick 5  

 Aedes cinereus Central 2  
Eastern 1  
South-western 1  

New Brunswick 3  
 Aedes communis Northern 5  
 Aedes dorsalis Central 2  

South-western 1  
Northern 1  

 Aedes euedes Central 3  
Eastern 4  

 Aedes excrucians Central 5  
Eastern 2  

 Aedes fi tchii Central 1  
Eastern 4  

 Aedes grossbecki Central 2  
South-western 2  

 Aedes implicatus Central 1  
Eastern 6  
Northern 3  
South-western 1  

New Brunswick 2  
 Aedes intrudens Eastern 1  

Northern 1  
 Aedes japonicus Central 1  

Eastern 1  
South-western 4  

 Aedes provocans Central 1  
Eastern 5  
South-western 1  

 Aedes riparius Central 7  
 Aedes sollicitans South-western 5  
 Aedes stictus Northern 1  
 Aedes stimulans Central 22  

South-western 4  
 Aedes triserratus Central 3  

Eastern 4  
South-western 3  

 Aedes trivittatus Central 6  
South-western 4  

 Aedes vexans Central 8  
South-western 4  
Eastern 1  

New Brunswick 8  
 Anopheles funestus  GenBank 1  

  Species
Collection origin 
in Ontario

Collection origin 
outside Ontario

Number of 
specimens    

 Anopheles earlei Central 1  
Northern 3  

GenBank 1  
 Anopheles gambiae GenBank 1  
 Anopheles maculipennis GenBank 2  
 Anopheles messeae GenBank 2  
 Anopheles punctipennis Central 10  

South-western 5  
 Anopheles 
quadrimaculatus 

Central 9  

South-western 2  
GenBank 1  

 Anopheles pullus GenBank 2  
 Anopheles rivulorum GenBank 1  
 Anopheles sacharovi GenBank 2  
 Anopheles sinensis GenBank 1  
 Anopheles stephensi GenBank 1  
 Anopheles sundaicus GenBank 2  
 Anopheles walkeri Central 4  

Eastern 2  
 Coquillettidia 
perturbans 

Central 5  

Northern 2  
Eastern 11  
South-western 1  

 Culex pipiens Central 4  
South-western 7  

 Culex restuans Central 5  
South-western 5  
Northern 1  

 Culex salinarius Eastern 5  
South-western 1  

 Culex tarsalis GenBank 1  
 Culex territans Central 1  

Eastern 1  
Northern 1  

 Culiseta impatient GenBank 1  
 Culiseta inornata South-western 5  
 Culiseta minnesotae Northern 1  

Eastern 1  
 Culiseta morsitans Central 2  

Northern 3  
Eastern 1  

 Orthopodymia alba Central 1  
 Sabethes cyaneus GenBank 1  
 Toxorhynchites rutilus GenBank 1  
 Toxorhynchites  sp. GenBank 1  
 Uranotaenia sapphirina Central 3  

Eastern 1  
 South-western  2  

Table 1. Continued.
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samples were obtained from small amounts of tissue (two to 
three legs) from frozen pinned mosquitoes. 

 For each mosquito, 30  � L of total DNA was extracted using 
the GeneElute TM  Mammalian Genomic DNA Miniprep Kit 
(Sigma-Aldrich Co., St. Louis, MO, U.S.A.). The primer pairs 
LCO1490 and HCO2198 ( Folmer  et al. , 1994 ) or LepF (5 ′ -ATT
CAACCAATCATAAAGATATTGG-3 ′ ) and HCO2198 were 
subsequently used to amplify  ~  650 bp fragments of CO1 which 
were trimmed later to 617 bp in the barcode region of CO1. Each 
PCR cocktail contained 2.5  � L 10 X PCR buffer, pH 8.3 (10 mM 
Tris-CH1, pH 8.3 and 50 mM KC1, 0.01% NP-40), 1.5 mM 
MgCl 2 , 200  � M of each NTP, 1 unit Taq polymerase, 0.3  � M of 
each primer, 1 – 5  � L of DNA template and the remaining vol-
ume of ddH 2 O up to 25  � L. The PCR thermal regime consisted 
of one cycle of 1 min at 95 °C, 35 cycles of 1 min at 94 °C, 
1 min at 55 °C, 1.5 min at 72 °C, and a final cycle of 7 min at 
72 °C. All PCR products were subjected to dye terminator cycle 
sequencing reactions (30 cycles, 55 °C annealing), and 

sequenced on ABI 377 or 3730 automated sequencers, using 
Big Dye vs. 3.1 and LCO1490 primer.  

  Data analysis 

 Electropherograms for the CO1 gene were edited and 
aligned with Sequencher TM    Version 4.5 (Gene Codes Corp., 
Ann Arbor, MI, U.S.A.). Pairwise nucleotide sequence diver-
gences were calculated using the Kimura 2-parameter (K2P) 
model ( Kimura, 1980 ), and neighbour-joining (NJ) analysis 
( Saitou & Nei, 1987 ) in mega 2.1 was used to examine rela-
tionships among taxa. All sequences obtained in this study 
have been deposited in GenBank. Collection localities and 
other specimen information, such as the GenBank submission 
numbers, will be available in the  ‘ Mosquitoes of Canada ’  file 
in the Completed Project section of the Barcode of Life web-
site ( http://www.barcodinglife.org ).   

         Fig.    2.     Neighbour-joining analysis of Kimura 
2-parameter (K2P) distances of CO1 mosquito 
sequences from Ontario and New Brunswick. 
Labels indicate mosquitoes collected in New 
Brunswick.   

 MSQ011-04|JE011|Aedes cantator
 MSQ012-04|JE012|Aedes cantator 

 MSQ026-04|JE026|Aedes cantator 
 MSQ025-04|JE025|Aedes cantator 

 193-10 Aedes cantator
 MSQ018-04|JE018|Aedes cantator 

 MSQ013-04|JE013|Aedes canadensis
 173-20 Aedes canadensis

 MSQ006-04|JE006|Aedes canadensis 
 MSQ020-04|JE020|Aedes canadensis 

 MSQ027-04|JE027|Aedes canadensis 
 18-20 Aedes intrudens

 193-9 Aedes dorsalis
 21-43 Aedes riparius
 35.03 Aedes euedes

 23.03 Aedes stimulans
 30.03 Aedes excrucians

 281-45 Aedes trivittatus
 SL6 Aedes sollicitans

 176-16 Aedes triseriatus
 32-14 Aedes aurifer

 CO73 Aedes communis
 AB55 Aedes abserratus
 MSQ007-04|JE007|Aedes implicatus 
 AB56 Aedes implicatus
 MSQ028-04|JE028|Aedes implicatus 

 PR64 Aedes provocans
 32-18 Aedes fitchii

 20-19 Aedes grossbecki
 ST11 Aedes stictus

 JP9 Aedes japonicus
 AP20 Aedes atropalpus

 MSQ008-04|JE008|Aedes vexans
 MSQ023-04|JE023|Aedes vexans
 MSQ015-04|JE015|Aedes vexans

 MSQ016-04|JE016|Aedes vexans
 MSQ002-04|JE002|Aedes vexans

 MSQ022-04|JE022|Aedes vexans
 MSQ003-04|JE003|Aedes vexans

 34.03 Aedes vexans
 MSQ009-04|JE009|Aedes vexans

 MSQ010-04|JE010|Aedes cinereus 
 MSQ024-04|JE024|Aedes cinereus 

 CN46 Aedes cireneus
 MSQ001-04|JE001|Aedes cinereus 

 185-15 Culiseta inornata
 I1-40h1LT Orthopodymia alba

 193-64 Uranotaenia sapphirina
 TT41 Culex territans

 PP10 Culex pipiens
 SN38 Culex salinarius

 RN26 Culex restuans
 184-70 Culiseta morsitans
 22-52 Culiseta minnesotae

 Cq79 Coquillettidia perturbans
 C1-23 Anopheles quadrimaculatus

 N1-34 Anopheles earlei
 43FN Anopheles punctipennis

 C1-14 Anopheles walkeri
 SLB-2003 Tipula sp. (outgroup)

Mosquito sequences from New Brunswick
 MSQ011-04|JE011|Aedes cantator

 MSQ013-04|JE013|Aedes canadensis
 MSQ018-04|JE018|Aedes cantator

 MSQ025-04|JE025|Aedes cantator
 MSQ026-04|JE026|Aedes cantator

 MSQ012-04|JE012|Aedes cantator

MSQ007-04|JE007|Aedes implicatus

MSQ027-04|JE027|Aedes canadensis
MSQ020-04|JE020|Aedes canadensis

MSQ006-04|JE006|Aedes canadensis

MSQ023-04|JE023|Aedes vexans
MSQ008-04|JE008|Aedes vexans

 MSQ028-04|JE028|Aedes implicatus

 MSQ016-04|JE016|Aedes vexans
 MSQ015-04|JE015|Aedes vexans

 MSQ002-04|JE002|Aedes vexans

 MSQ009-04|JE009|Aedes vexans

 MSQ003-04|JE003|Aedes vexans
 MSQ022-04|JE022|Aedes vexans

 MSQ001-04|JE001|Aedes cinereus

MSQ024-04|JE024|Aedes cinereus
 MSQ010-04|JE010|Aedes cinereus

0.02
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         Fig.    3.     Neighbour-joining analysis of Kimura 
2-parameter (K2P) distances of CO1 mosquito 
sequences from Ontario and from GenBank. 
Labels indicate sequences obtained from 
GenBank.   

 23.03 Aedes stimulans
 30.03 Aedes excrucians

 35.03 Aedes euedes
 21-43 Aedes riparius

 18-20 Aedes intrudens
 193-9 Aedes dorsalis

 193-10 Aedes cantator
 173-20 Aedes canadensis

 PR64 Aedes provocans
 32-18 Aedes fitchii

 20-19 Aedes grossbecki
 281-45 Aedes trivittatus
 SL6 Aedes sollicitans

 176-16 Aedes triseriatus
 32-14 Aedes aurifer

 CO73 Aedes communis
 AB55 Aedes abserratus
 AB56 Aedes implicatus

 ST11 Aedes stictus
 JP9 Aedes japonicus

 AP20 Aedes atropalpus
 AF425845 Aedes atropalpus

 34.03 Aedes vexans
 CN46 Aedes cireneus

 AF390098 Aedes aegypti
 AY056596 Aedes aegypti

 AY056597 Aedes aegypti
 AF380835 Aedes aegypti
 AF425846 Aedes aegypti

 185-15 Culiseta inornata
 AF425848 Culiseta impatiens

 184-70 Culiseta morsitans
 22-52 Culiseta minnesotae

 Cq79 Coquillettidia perturbans
 TT41 Culex territans
 PP10 Culex pipiens
 SN38 Culex salinarius

 RN26 Culex restuans
 AF425847 Culex tarsalis

 C1-14 Anopheles walkeri
 AY423060 Anopheles rivulorum

 AF368140 Anopheles sundaicus
 AF368117 Anopheles sundaicus

 AY423059 Anopheles funestus
 AF425844 Anopheles stephensi
 NC000084 Anopheles gambiae

 AY444348 Anopheles pullus
 AY444349 Anopheles pullus

 AY444351 Anopheles sinensis
 C1-23 Anopheles quadrimaculatus
 NC000875 Anopheles quadrimaculatus

 43FN Anopheles punctipennis
 N1-34 Anopheles earlei
 AF425843 Anopheles earlei

 AY135695 Anopheles sacharovi
 AY135697 Anopheles sacharovi

 AY258169 Anopheles messeae
 AY258170 Anopheles messeae

 AF342719 Anopheles maculipennis
 AF491733 Anopheles maculipennis

 AF425840 Sabethes cyaneus
 I1-40LT Orthopodymia alba

 AF425849 Toxorhynchites rutilus
 AF425850 Toxorhynchites sp.

 193-64 Uranotaenia sapphirina
 SLB-2003 Tipula sp. (outgroup)

AF425846 Aedes aegypti
AF380835 Aedes aegypti
 AY056597 Aedes aegypti

 AF425845 Aedes atropalpus

AY056596 Aedes aegypti
AF390098 Aedes aegypti

AY423059 Anopheles funestus
 AF368117 Anopheles sundaicus
AF368140 Anopheles sundaicus

AY423060 Anopheles rivulorum

AF425847 Culex tarsalis

 AF425848 Culiseta impatiens

AY444351 Anopheles sinensis
AY444349 Anopheles pullus
AY444348 Anopheles pullus

 NC000084 Anopheles gambiae
AF425844 Anopheles stephensi

 AY258169 Anopheles messeae
 AY135697 Anopheles sacharovi
 AY135695 Anopheles sacharovi

 AF425843 Anopheles earlei

 NC000875 Anopheles quadrimaculatus

 AF425850 Toxorhynchites sp.
 AF425849 Toxorhynchites rutilus

AF425840 Sabethes cyaneus
 AF491733 Anopheles maculipennis

 AF342719 Anopheles maculipennis
AY258170 Anopheles messeae

  Results 

 Sequences for 37 mosquito species from Ontario were compared 
with those for five species from New Brunswick (    Fig.   2) and 19 
species from GenBank (    Fig.   3), producing sequence records for 
53 mosquito species belonging to nine genera and three sub-
families (Anophelinae, Culicinae and Toxorhynchitinae). 
Individual species were represented by one to 26 individuals, for 
a total of 302 CO1 sequences. Because these sequences contained 
no indels, alignments were straightforward. The CO1 sequences 
had a strong A + T bias (average 67% for all codons), especially, 
at third codon positions (91%) (    Table   2). The pattern was gener-
ally consistent across genera, with the A + T content ranging 
from 64% ( Coquillettidia  sp.) to 70% ( Uranotaenia  sp.). 

 All but one of the sequences lacked nonsense or stop codons, 
supporting their origin from the mitochondrial gene. One prob-

able pseudogene, a CO1 sequence from an individual of  Culex 
restuans  (Theobald), contained one stop codon and 15 amino 
acid substitutions in comparison with the consensus sequence 
for other mosquitoes. In addition, it showed substantial 
sequence divergence (3.9 − 4.4% nt) from the other representa-
tives of its species. 

 Individuals of a single species always grouped closely to-
gether, regardless of where they were collected (    Figs   2, 3 and 4). 
All species also possessed a distinctive set of CO1 sequences, 
most of which showed low intraspecific divergences. Conspecific 
K2P divergence averaged 0.5% (range 0 – 3.9%), whereas se-
quence divergences between congeneric species averaged 10.4% 
(range 0.2 – 17.2%) (    Fig.   5a, b). Sequence divergences were even 
higher among species in different genera, averaging 16.0% 
(range 7.2 – 26.3%;  Fig.   5c ). Most conspecific sequences (98%) 
showed < 2% divergence, including those between two 
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         Fig.   4.     Neighbour-joining analysis of the Kimura 2-parameter (K2P) distances of CO1 sequences from mosquitoes collected in Ontario. Labels indi-
cate the collection areas in Ontario.   
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Fig. 4. Continued.
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         Fig.    5.     Pairwise comparisons between CO1 
sequences among mosquito species separated 
into three categories: (a) intraspecific; (b) intra-
genic, and (c) intergenic differences between 
individuals.   
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         Fig.    6.     Observed numbers of transitions (ts) 
and transversions (tv) for the CO1 gene plotted 
against sequence divergence. The ts saturation 
begins to level off at around 7.5% sequence di-
vergence. Tv increases steadily from the conspe-
cific level of  ~  7% divergence, then, after a 
 sudden jump, continues to grow more rapidly 
among more distantly related taxa.   
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morphologically distinctive subspecies of  Aedes vexans (Ae. 
vexans vexans  (Meigen) and  Ae. vexans nipponi  (Theobald), 
0 − 1.11%) ,  but deeper divergences were detected in two species. 
One specimen of  Aedes fitchii  (Felt & Young) showed 3.6 − 3.9% 
divergence from other conspecific individuals, and specimens 
of  Aedes abserratus  (Felt & Young) were separated into three 
clusters showing 2.6 – 3.2% sequence divergence. A single case 
involving  Ae. fitchii  and  Aedes grossbecki  Dyar & Knab was 
detected where the three individuals of  Ae. grossbecki  were 
closer to some individuals of  Ae. fitchii  than to some of the lat-
ter ’ s own conspecifics, but they still possessed distinct barcodes. 
There was generally high bootstrap support (90 − 100%) for the 
terminal branches at the species level, with the exception of a 
few records for  Anopheles  species, obtained from GenBank and 
represented by only one or two individuals. 

 Plots of the total number of transitions (ts) + transversions 
(tv) at all sites against the sequence divergence (    Fig.   6) showed 
a rapid increase in transitions at the conspecific level and 
partially at the congeneric levels to a max of 30 – 40 ts substitu-
tions at around 7% divergence. The incidence of transitions lev-
elled off at the border between the congeneric and the intergeneric 

levels. By contrast, transversions increased steadily from zero 
substitutions at the conspecific level to < 10 substitutions at 
around 7% divergence at the congeneric level, and then, after a 
sudden jump to 20 substitutions, grew rapidly to a max of  ~  60 
substitutions among more distantly related sequences. 

 The neighbour-joining analysis of nucleotide and amino acid 
sequences showed that most mosquito species separated into 
distinct clusters ( Figs   2, 3 and 4 ). Species in genera represented 
by more than one taxon usually formed cohesive assemblages.  

  Discussion 

 An effective DNA-based identification system requires the sat-
isfaction of three conditions: (a) it must be possible to recover 
the target DNA from all species; (b) the sequence information 
must be easily analysed, and (c) the information content of the 
target sequence must be sufficient to enable species-level iden-
tification. All three of these requirements were met in this study. 
We were able to recover and align the targeted CO1 fragment 
from all mosquito species we examined. Furthermore, although 
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we amplified CO1 from total genomic DNA, we detected only a 
single nuclear pseudogene. In addition, specimens of all species 
formed distinctive clusters and, with the exception of a single 
species pair, barcode divergences were relatively large between 
taxa. Finally, species boundaries were congruent with those es-
tablished by morphological taxonomic work. 

 DNA-based species identification systems depend on the 
ability to distinguish intraspecific from interspecific variation. 
In the present study, CO1 sequence differences among conge-
neric species were, on average, almost 20 times higher than the 
average differences within species. The average conspecific 
K2P divergence for mosquito species (0.55%) in this study is 
slightly higher than those earlier reported for North American 
birds (0.27%;  Hebert  et al. , 2004 ) and moths (0.25%;  Hebert 
 et al. , 2003a ). However, this difference reflects our detection of 
deep intraspecific divergence in two taxa ( Ae. fitchii, Ae. 
abserratus ), instances that may indicate overlooked sibling 
species. 

 Interestingly, two morphologically distinctive subspecies,  Ae. 
vexans vexans  and  Ae. vexans nipponi  (dissimilar coloration of 
scales on the abdominal sternites) show barcode congruence. 
The latter subspecies was brought to the U.S.A. in 1999, prob-
ably from Korea. 

 We detected one case of low interspecific sequence diver-
gence, involving the  Ae. fitchii/Ae. grossbecki  complex.  Ae. 
grossbecki  is rare in Ontario, although common in nearby north-
western Ohio ( Venard & Mead, 1953 ). Adults of this species 
were collected from the Windsor − London area, in the region of 
its first recorded presence in Canada ( Helson  et al. , 1978 ), and 
specimens of  Ae. fitchii  were collected further to the north-east. 
The latter individuals showed morphological evidence of 
hybridization in that two types of scales were present on the 
wings of single individuals: large triangular scales, typical of 
 Ae. grossbecki , were observed on the anterior half of their 
wings and elongate scales, typical of  Ae. fitchii,  occurred poste-
riorly. In cases such as this, indicating possible hybridization, as 
well as in those cases characterized by incomplete sorting of 
mitochondrial lineages, more detailed morphological and ge-
netic examinations will be required. The examination of faster 
evolving mitochondrial genes, such as the control region or 
ND4, as well as analysis of nuclear regions, such as internal 
transcribed spacers   (ITS), may aid in establishing species 
boundaries in at least some of the cases that cannot be resolved 
though CO1. 

 The effective application of DNA sequence data to molecular 
diagnostics depends on patterns of nucleotide substitution and 
the rate of variation among sites ( Blouin  et al. , 1998 ). The CO1 
region in mosquitoes is characterized by a high rate of transi-
tional saturation along the sequence divergence axis, particu-
larly at silent sites. The ts saturation begins to level off at around 
7.5% sequence divergence, suggesting caution in the interpreta-
tion of pairwise comparisons at the congeneric and intergeneric 
levels, unless silent sites are excluded from analysis. 

 Although our studies on the mosquito fauna of eastern Canada 
provide an early indication of the patterns of CO1 sequence diver-
gence within and among species, GenBank sequences for 
 Anopheles earlei  Vargas from South Africa and  Anopheles quad-
rimaculatus  Say from the U.S.A. grouped closely with other indi-

viduals of their species from Ontario. Moreover, other GenBank 
sequences from  ‘ exotic ’  species, in the genera  Culex, Culiseta  
and  Anopheles , grouped with allied taxa in our NJ analysis, but 
formed distinct, tight sequence clusters. On this basis, we antici-
pate that further growth in taxon and geographical coverage will 
not seriously alter the conclusions drawn from this study. In short, 
we expect that congeneric species will regularly show sequence di-
vergences in the CO1 region averaging  ~  10% and that divergence 
values for conspecific individuals will usually fall below 0.5%. 

 In summary, this study has provided the first CO1 barcodes 
for Canadian mosquitoes and has established their effectiveness 
in discriminating species of mosquitoes recognized through prior 
taxonomic work. Specimens of single species formed barcode 
clusters with tight cohesion that were usually clearly distinct 
from those of allied species. Sequence divergences were, on av-
erage, nearly 20 times higher for congeneric species than for 
members of a species, ensuring that species identifications within 
this local species assemblage were robust. As an effort has now 
been launched to gather DNA barcodes for all known mosquito 
species, a full evaluation of the effectiveness of DNA barcoding 
for members of the family Culicidae should soon be available.    
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